Peer-reviewed papers (after 2020)

  • [14] Giuseppe Floridia, Yikan Liu and Masahiro Yamamoto, Blow-up in L1(Ω)-norm and global existence for time-fractional diffusion equations with polynomial semilinear terms, Adv. Nonlinear Anal., 2023, accepted, arXiv: 2302.12724
  • [13] Xinchi Huang and Yikan Liu, Long-time asymptotic estimate and a related inverse source problem for time-fractional wave equations, Practical Inverse Problems and Their Prospects, Mathematics for Industry, 37, Springer, Singapore, 2023, 163–179. doi: 10.1007/978-981-99-2408-0_11
  • [12] Yikan Liu and Masahiro Yamamoto, Uniqueness of inverse source problems for time-fractional diffusion equations with singular functions in time, Practical Inverse Problems and Their Prospects, Mathematics for Industry, 37, Springer, Singapore, 2023, 145–162. doi: 10.1007/978-981-99-2408-0_10
  • [11] Siyu Cen, Bangti, Jin, Yikan Liu and Zhi Zhou, Numerical recovery of multiple parameters in subdiffusion from one lateral boundary measurement, Inverse Problems, 39(10), 2023, 104001 (31pp). doi: 10.1088/1361-6420/acef50
  • [10] Yavar Kian, Yikan Liu and Masahiro Yamamoto, Uniqueness of inverse source problems for general evolution equations, Commun. Contemp. Math., 25(6), 2023, 225009 (33pp). doi: 10.1142/S0219199722500092
  • [9] Zhiyuan Li, Xinchi Huang and Yikan Liu, Well-posedness for coupled systems of time-fractional diffusion equations, Fract. Calc. Appl. Anal., 26(2), 2023, 533–566. doi: 10.1007/s13540-023-00149-0
  • [8] Yikan Liu and Masahiro Yamamoto, Uniqueness of orders and parameters in multi-term time-fractional diffusion equations by short-time behavior, Inverse Problems39(2), 2023, 024003 (28pp). doi: 10.1088/1361-6420/acab7a
  • [7] Zhiyuan Li, Yikan Liu and Masahiro Yamamoto, Inverse source problem for a one-dimensional time-fractional diffusion equation and unique continuation for weak solutions, Inverse Probl. Imaging, 17(1), 2023, 1–22. doi: 10.3934/ipi.2022027
  • [6] Yavar Kian, Zhiyuan Li, Yikan Liu and Masahiro Yamamoto, The uniqueness of inverse problems for a fractional equation with a single measurement, Math. Ann.380(3), 2021, 1465–1495. doi: 10.1007/s00208-020-02027-z
  • [5] Yikan Liu, Guanghui Hu and Masahiro Yamamoto, Inverse moving source problem for time-fractional evolution equations: Determination of profiles, Inverse Problems37(8), 2021, 084001 (24pp). doi: 10.1088/1361-6420/ac0c20
  • [4] Zhiyuan Li, Xing Cheng and Yikan Liu, Generic well-posedness for an inverse source problem for a multi-term time-fractional diffusion equation, Taiwanese J. Math.24(4), 2020, 1005–1020. doi: 10.11650/tjm/191103
  • [3] Daijun Jiang, Yikan Liu and Dongling Wang, Numerical reconstruction of the spatial component in the source term of a time-fractional diffusion equation, Adv. Comput. Math.46(3), 2020, Article 43. doi: 10.1007/s10444-020-09754-6
  • [2] Guanghui Hu, Yikan Liu and Masahiro Yamamoto, Inverse moving source problems for fractional diffusion(-wave) equations: Determination of orbits, Inverse Problems and Related Topics, Springer Proceedings in Mathematics & Statistics 310, Springer, Singapore, 2020, 81–100. doi: 10.1007/978-981-15-1592-7_5
  • [1] Jin Cheng, Yi-kan Liu, Yan-bo Wang and Masahiro Yamamoto, Unique continuation property with partial information for two-dimensional anisotropic elasticity systems, Acta Math. Appl. Sin. Engl. Ser.36(1), 2020, 3–17. doi: 10.1007/s10255-020-0910-y

 

Preprints

  • [2] Xinchi Huang and Yikan Liu, Short-time asymptotic estimates for solutions to time-fractional wave equations and applications, preprint.
  • [1] Xinchi Huang, Yikan Liu and Masahiro Yamamoto, Blow-up for time-fractional diffusions equations with superlinear convex semilinear terms, preprint.

 

RIMS Kôkyûroku

  • [2] Yikan Liu, On time-fractional diffusion equations and related inverse problems, RIMS Kôkyûroku, 2232, 2022, 50–65.
  • [1] Yikan Liu, Numerical schemes for reconstructing profiles of moving sources in (time-fractional) evolution equations, RIMS Kôkyûroku2174, 2021, 73–87.