Research(研究紹介)
則化を代表とする数値再構成法を開発するなど,細心な注意を払いながら研究を進めています.特に近年は基本の楕円・放物・双曲型方程式のほか,非局所モデルの一種である0.5回微分を持つような非整数階発展方程式の逆問題に興味を持っています[R1].
参考文献
[N1] 長山雅晴, 樟脳運動の数理モデル, 数理科学, 12–17,2008年1月号, 長山雅晴,樟脳船の数理モデル,数学セミナー,8–12,2015年2月号, M. Nagayama, S. Nakata, Y. Doi and Y. Hayashima, A theoretical and experimental study on the unidirectional motion of a camphor disk, Physica D, 194(2004) 151-165.
[N2] K. Nishi, T. Ueda, M. Yoshii, Y. S. Ikura, H. Nishimori, S. Nakata and M. Nagayama, Bifurcation phenomena of two self-propelled camphor disks on an annular field depending on system length, Phys.Rev.E 92(2015), M. Okamoto, T. Gotoda and M. Nagayama, Existence and non‑existence of asymmetrically rotating solutions to a mathematical model of self‑propelled motion, Japan J. Indust. Appl. Math. (2020).
[N3] M.Nagayama, Y.Doi and S.Nakata, “リン酸緩衝液上での樟脳酸運動の数理モデル”,京都大学数理解析研究所講究録,1313 (2003) 159-166, Y. Satoh, Y. Sogabe. K. Kayahara, S. Tanaka, M. Nagayama and S. Nakata, Self-inverted reciprocation of an oil droplet on a surfactant solution, Soft Matter 13, 3422-3430(2017).
[N4] Yasuaki Kobayashi, Hiroyuki Kitahata and Masaharu Nagayama, Sustained dynamics of a weakly excitable system with nonlocal interactions, Physical Review E 96, 022213 (2017)
[U1] Y. Giga and Y. Ueda, Numerical computations of split Bregman method for fourth order total variation flow, Journal of Computational Physics, Vol. 405 (2020)
[R1] Y. Liu, Z. Li and M. Yamamoto, Inverse problems of determiningsources of the fractional partial differential equations, in: Handbook of Fractional Calculus with Applications. Volume 2: Fractional Differential Equations, De Gruyter, Berlin, 2019, 411-430.